Myogenic differentiation during regrowth of atrophied skeletal muscle is associated with inactivation of GSK-3β

نویسندگان

  • Jos L.J. van der Velden
  • Ramon C.J. Langen
  • Marco C.J.M. Kelders
  • Jodil Willems
  • Emiel F.M. Wouters
  • Yvonne M.W. Janssen-Heininger
  • Annemie M.W.J. Schols
چکیده

Muscle atrophy contributes to morbidity and mortality in aging and chronic disease, emphasizing the need to gain understanding of mechanisms involved in muscle atrophy and (re)growth. We hypothesized that the magnitude of muscle regrowth during recovery from atrophy determines if myonuclear accretion and myogenic differentiation are required, and that Insulin-like Growth Factor-I (IGF-I)/Akt/ Glycogen Synthase Kinase 3β (GSK-3β) signalling differs between regrowth responses. To address this hypothesis we subjected mice to hindlimb suspension (HS) to induce atrophy of soleus (-40%) and plantaris muscle (-27%). Reloading-induced muscle regrowth was complete after 14 days and involved an increase in IGF-IEa mRNA expression which coincided with Akt phosphorylation in both muscles. In contrast, phosphorylation and inactivation of GSK-3β were observed during soleus regrowth only. Furthermore, soleus but not plantaris regrowth involved muscle regeneration based on a transient increase in expression of histone 3.2 and myosin heavy chain perinatal, which are markers of myoblast proliferation and differentiation, and a strong induction of Muscle Regulatory Factor (MRF) expression. Experiments in cultured muscle cells showed that IGF-I induced MRF expression is facilitated by inactivation of GSK-3β and selectively occurs in the myoblast population.This study suggests that induction of IGF-I expression and Akt phosphorylation during recovery from muscle atrophy is independent of the magnitude of muscle regrowth. Moreover, our data demonstrate for the first time that the regenerative response characterized by myoblast proliferation, differentiation and increased MRF expression in recovering muscle is associated with the magnitude of regrowth and may be regulated by inactivation of GSK-3β.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myogenic differentiation during regrowth of atrophied skeletal muscle is associated with inactivation of GSK-3beta.

Muscle atrophy contributes to morbidity and mortality in aging and chronic disease, emphasizing the need to gain understanding of the mechanisms involved in muscle atrophy and (re)growth. We hypothesized that the magnitude of muscle regrowth during recovery from atrophy determines whether myonuclear accretion and myogenic differentiation are required and that insulin-like growth factor (IGF)-I/...

متن کامل

Inhibition of Glycogen Synthase Kinase-3β Attenuates Glucocorticoid-Induced Suppression of Myogenic Differentiation In Vitro

Glucocorticoids are the only therapy that has been demonstrated to alter the progress of Duchenne muscular dystrophy (DMD), the most common muscular dystrophy in children. However, glucocorticoids disturb skeletal muscle metabolism and hamper myogenesis and muscle regeneration. The mechanisms involved in the glucocorticoid-mediated suppression of myogenic differentiation are not fully understoo...

متن کامل

Suppression of GSK-3β activation by M-cadherin protects myoblasts against mitochondria-associated apoptosis during myogenic differentiation.

Apoptosis occurs concurrently with differentiation of muscle progenitor cells (MPCs) before they fuse to form myotubes. Dysregulated apoptosis in MPCs contributes to the low regeneration capability in aged muscle and decreases the survival rate of donor cells in stem cell-based therapies for muscular dystrophies. This study investigated the role of the M-cadherin/PI3K/Akt/GSK-3β signaling pathw...

متن کامل

Skeletal muscle atrophy leads to loss and dysfunction of muscle precursor cells.

Atrophy of skeletal muscle leads to decreases in myofiber size and nuclear number; however, the effects of atrophic conditions on muscle precursor cells (MPC) are largely unknown. MPC lie outside myofibers and represent the main source of additional myonuclei necessary for muscle growth and repair. In the present study, we examined the properties of MPC after hindlimb suspension (HS)-induced at...

متن کامل

Expression of Gsk-3β And β-Catenin Proteins in the PMSG Stimulated Rat Ovary

Purpose: The ovary is an example of a developing tissue in which developmental prosses occur throughout reproductive life. We investigate the expression of GSK-3β and β-catenin- Wnt pathway molecules- in the rat ovary during follicular development. Materials and Methods: To induce follicular growth and development, 23 days old immature female rats were injected with 10 IU of PMSG. Forty and for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006